151

2.4 Exercises

See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Vocabulary: Fill in the blanks.

- 1. A number has the form a + bi, where $a \ne 0$, b = 0.
- 2. An _____ number has the form a + bi, where $a \neq 0$, $b \neq 0$.
- 3. A _____ number has the form a + bi, where a = 0, $b \ne 0$.
- **4.** The imaginary unit i is defined as $i = \underline{\hspace{1cm}}$, where $i^2 = \underline{\hspace{1cm}}$
- 5. When a is a positive real number, the _____ root of -a is defined as $\sqrt{-a} = \sqrt{ai}$.
- **6.** The numbers a + bi and a bi are called ______, and their product is a real number $a^2 + b^2$.

Skills and Applications

Equality of Complex Numbers In Exercises 7–10, find real numbers a and b such that the equation is true.

- 7. a + bi = 9 + 8i
- 8. a + bi = 10 5i
- 9. (a-2) + (b+1)i = 6+5i
- **10.** (a + 2) + (b 3)i = 4 + 7i

■ Writing a Complex Number in Standard Form In Exercises 11-22, write the complex number in standard form.

- 11. $2 + \sqrt{-25}$
- 12. $4 + \sqrt{-49}$
- 13. $1 \sqrt{-12}$
- 14. $2 \sqrt{-18}$
- 15. $\sqrt{-40}$
- 16. $\sqrt{-27}$

17. 23

- **18.** 50
- 19. $-6i + i^2$
- **20.** $-2i^2 + 4i$
- **21.** $\sqrt{-0.04}$
- **22.** $\sqrt{-0.0025}$

Adding or Subtracting Complex Numbers In Exercises 23–30, perform the operation and write the result in standard form.

- **23.** (5+i)+(2+3i) **24.** (13-2i)+(-5+6i)
- **25.** (9-i)-(8-i) **26.** (3+2i)-(6+13i)
- 27. $(-2 + \sqrt{-8}) + (5 \sqrt{-50})$
- **28.** $(8 + \sqrt{-18}) (4 + 3\sqrt{2}i)$
- **29.** 13i (14 7i)
- **30.** 25 + (-10 + 11i) + 15i

Multiplying Complex Numbers In Exercises 31-38, perform the operation and write the result in standard form.

- **31.** (1+i)(3-2i)
- 32. (7-2i)(3-5i)
- 33. 12i(1-9i)
- **34.** -8i(9+4i)
- **35.** $(\sqrt{2} + 3i)(\sqrt{2} 3i)$ **36.** $(4 + \sqrt{7}i)(4 \sqrt{7}i)$
- 37. $(6 + 7i)^2$
- 38. $(5-4i)^2$

Multiplying Conjugates In Exercises 39–46, write the complex conjugate of the complex number. Then multiply the number by its complex conjugate.

- **39.** 9 + 2i
- **40.** 8 10i
- **41.** $-1 \sqrt{5}i$
- **42.** $-3 + \sqrt{2}i$
- **43.** $\sqrt{-20}$
- **44.** $\sqrt{-15}$

45. $\sqrt{6}$

46. $1 + \sqrt{8}$

A Quotient of Complex Numbers in Standard Form In Exercises 47–54, write the quotient in standard form.

- 47. $\frac{2}{4-5i}$

- 51. $\frac{9-4i}{i}$

Performing Operations with Complex Numbers In Exercises 55–58, perform the operation and write the result in standard

- 55. $\frac{2}{1+i} \frac{3}{1-i}$ 56. $\frac{2i}{2+i} + \frac{5}{2-i}$
- **57.** $\frac{i}{3-2i} + \frac{2i}{3+8i}$ **58.** $\frac{1+i}{i} \frac{3}{4-i}$

Writing a Complex Number in Standard Form In Exercises 59-66, write the complex number in standard form.

- 59. $\sqrt{-6}\sqrt{-2}$ 60. $\sqrt{-5}\sqrt{-10}$ 61. $(\sqrt{-15})^2$ 62. $(\sqrt{-75})^2$ 63. $\sqrt{-8} + \sqrt{-50}$ 64. $\sqrt{-45} \sqrt{-5}$

- **65.** $(3 + \sqrt{-5})(7 \sqrt{-10})$ **66.** $(2 \sqrt{-6})^2$

Complex Solutions of a Quadratic Equation In Exercises 67–76, use the Quadratic Formula to solve the quadratic equation.

- 67. $x^2 2x + 2 = 0$
- **68.** $x^2 + 6x + 10 = 0$
- **69.** $4x^2 + 16x + 17 = 0$ **70.** $9x^2 6x + 37 = 0$
- 71. $4x^2 + 16x + 21 = 0$ 72. $16t^2 4t + 3 = 0$
- 73. $\frac{3}{2}x^2 6x + 9 = 0$ 74. $\frac{7}{8}x^2 \frac{3}{4}x + \frac{5}{16} = 0$
- **75.** $1.4x^2 2x + 10 = 0$ **76.** $4.5x^2 3x + 12 = 0$

Simplifying a Complex Number In Exercises 77-86, simplify the complex number and write it in standard form.

- 77. $-6i^3 + i^2$
- 78. $4i^2 2i^3$
- **79.** $-14i^5$ 81. $(\sqrt{-72})^3$
- **80.** $(-i)^3$ **82.** $(\sqrt{-2})^6$

83. $\frac{1}{i^3}$

- 85. $(3i)^4$
- **86.** $(-i)^6$

The opposition to current in an electrical circuit is called its impedance. The impedance z in a parallel circuit with two pathways satisfies the equation

$$\frac{1}{z} = \frac{1}{z_1} + \frac{1}{z_2}$$

where z_1 is the impedance (in ohms) of pathway 1 and z_2 is the impedance (in ohms) of pathway 2.

(a) The impedance of each pathway in a parallel circuit is found by adding the impedances of all components in the pathway. Use the table to find z_1 and z_2

	Resistor	Inductor	Capacitor
Symbol	$a \Omega$	-‱- b Ω	$c \Omega$
Impedance	а	bi	- ci

(b) Find the impedance z_*

- 88. Cube of a Complex Number Cube each complex
 - (a) $-1 + \sqrt{3}i$ (b) $-1 \sqrt{3}i$

Exploration

True or False? In Exercises 89–92, determine whether the statement is true or false. Justify your answer.

- 89. The sum of two complex numbers is always a real
- **90.** There is no complex number that is equal to its complex
- **91.** $-i\sqrt{6}$ is a solution of $x^4 x^2 + 14 = 56$.
- **92.** $i^{44} + i^{150} i^{74} i^{109} + i^{61} = -1$

93. Pattern Recognition Find the missing values.

$$i^{1} = i$$
 $i^{2} = -1$ $i^{3} = -i$ $i^{4} = 1$
 $i^{5} = i^{6} = i^{7} = i^{8} = i^{8}$

- $i^9 = i^{10} = i^{11} = i^{12} = i^{12} = i^{12}$ What pattern do you see? Write a brief description of how you would find i raised to any positive integer power.

Match each complex number with its corresponding point.

- (i) 3 (ii) 3*i*
- (iii) 4 + 2i(iv) 2-2i (v) -3+3i (vi) -1-4i
- 95. Error Analysis Describe the error.

$$\sqrt{-6}\sqrt{-6} = \sqrt{(-6)(-6)} = \sqrt{36} = 6$$
 X

- 96. Proof Prove that the complex conjugate of the product of two complex numbers $a_1 + b_1 i$ and $a_2 + b_2 i$ is the product of their complex conjugates.
- **97. Proof** Prove that the complex conjugate of the sum of two complex numbers $a_1 + b_1 i$ and $a_2 + b_2 i$ is the sum of their complex conjugates.