Vocabulary: Fill in the blanks.

Below is a summary of the characteristics of the six basic trigonometric functions.

Domain: $(-\infty, \infty)$ Range: $\begin{bmatrix} -1, 1 \end{bmatrix}$ Period: 2π

Domain: $(-\infty, \infty)$ Range: [-1, 1]Period: 2π

Domain: all $x \neq \frac{\pi}{2} + n\pi$

Range: $(-\infty, \infty)$ Period: π

Domain: all $x \neq n\pi$ Range: $(-\infty, \infty)$ Period: π

Domain: all $x \neq \frac{\pi}{2} + n\pi$

Period: 2π

Range: $(-\infty, -1] \cup [1, \infty)$

Matching In Exercises 9–14, match the function with

(d)

11.
$$y = \frac{1}{2} \cot \pi x$$
 12. $y = -\csc x$

13.
$$y = \frac{1}{2} \sec \frac{\pi x}{2}$$

14. $y = -2 \sec \frac{\pi x}{2}$

periods.)

15. $y = \frac{1}{3} \tan x$

21. $y = \csc \pi x$

23. $y = \frac{1}{2} \sec \pi x$

27. $y = 3 \cot 2x$

 $29. \ y = \tan \frac{\pi x}{4}$

25. $y = \csc \frac{x}{2}$

31. $y = 2 \csc(x - \pi)$

33. $y = 2 \sec(x + \pi)$

35. $y = -\sec \pi x + 1$

37. $y = \frac{1}{4}\csc\left(x + \frac{\pi}{4}\right)$

17. $y = -\frac{1}{2} \sec x$ 19. $y = -2 \tan 3x$

5. The period of $y = \tan x$ is _____. **6.** The domain of $y = \cot x$ is all real numbers such that _____.

7. The range of $y = \sec x$ is _____.

8. The period of $y = \csc x$ is _____.

have symmetry with respect to the ___

Skills and Applications

its graph. State the period of the function. [The graphs are labeled (a), (b), (c), (d), (e), and (f).]

1. The tangent, cotangent, and cosecant functions are ______, so the graphs of these functions

2. The graphs of the tangent, cotangent, secant, and cosecant functions have _____ asymptotes.

Graphing a Trigonometric Function In Exercises 39-48, use a graphing utility to graph the function. (Include two full periods.)

39.
$$y = \tan \frac{x}{3}$$

40. $y = -\tan 2x$

41.
$$y = -2 \sec 4x$$
 42. $y = \sec \pi x$

Sketching the Graph of a Trigonometric

Function In Exercises 15–38, sketch the

graph of the function. (Include two full

16. $y = -\frac{1}{2} \tan x$

20. $y = -3 \tan \pi x$

22. $y = 3 \csc 4x$

24. $y = 2 \sec 3x$

28. $y = 3 \cot \frac{\pi x}{2}$

30. $y = \tan 4x$

32. $y = \csc(2x - \pi)$

34. $y = \tan(x + \pi)$ **36.** $y = -2 \sec 4x + 2$

38. $y = 2 \cot \left(x + \frac{\pi}{2}\right)$

26. $y = \csc \frac{x}{3}$

18. $v = \frac{1}{4} \sec x$

43.
$$y = \tan\left(x - \frac{\pi}{4}\right)$$
 44. $y = \frac{1}{4}\cot\left(x - \frac{\pi}{2}\right)$

45.
$$y = -c$$

45. $y = -\csc(4x - \pi)$ **46.** $y = 2\sec(2x - \pi)$

47.
$$y = 0.1 \tan\left(\frac{\pi x}{4} + \frac{\pi}{4}\right)$$
 48. $y = \frac{1}{3}\sec\left(\frac{\pi x}{2} + \frac{\pi}{2}\right)$

Domain: all $x \neq n\pi$ Range: $(-\infty, -1] \cup [1, \infty)$ Period: 2π

Summarize (Section 4.6)

- 1. Explain how to sketch the graph of $y = a \tan(bx c)$ (page 308). For examples of sketching graphs of tangent functions, see Examples 1 and 2.
- 2. Explain how to sketch the graph of $y = a \cot(bx c)$ (page 310). For an example of sketching the graph of a cotangent function, see Example 3.
- 3. Explain how to sketch the graphs of $y = a \csc(bx c)$ and $y = a \sec(bx - c)$ (page 311). For examples of sketching graphs of cosecant and secant functions, see Examples 4 and 5.
- 4. Explain how to sketch the graph of a damped trigonometric function (page 313). For an example of sketching the graph of a damped trigonometric function, see Example 6.

Exercises 49-56, find the solutions of the equation in the interval $[-2\pi, 2\pi]$. Use a graphing utility to verify your results.

49.
$$\tan x = 1$$

50.
$$\tan x = \sqrt{3}$$

51.
$$\cot x = -\sqrt{3}$$

52.
$$\cot x = 1$$
 54. $\sec x = 2$

53.
$$\sec x = -2$$

55.
$$\csc x = \sqrt{2}$$

56.
$$\csc x = -2$$

Even and Odd Trigonometric Functions In Exercises 57-64, use the graph of the function to determine whether the function is even, odd, or neither. Verify your answer algebraically.

58.
$$f(x) = \tan x$$

57.
$$f(x) = \sec x$$

59. $g(x) = \cot x$

60.
$$g(x) = \csc x$$

61.
$$f(x) = x + \tan x$$

62.
$$f(x) = x^2 - \sec x$$

63.
$$g(x) = x \csc x$$

64.
$$g(x) = x^2 \cot x$$

Identifying Damped Trigonometric Functions In Exercises 65–68, match the function with its graph. Describe the behavior of the function as x approaches zero. [The graphs are labeled (a), (b), (c), and (d).]

65.
$$f(x) = |x \cos x|$$

$$66. \ f(x) = x \sin x$$

67.
$$g(x) = |x| \sin x$$

68.
$$g(x) = |x| \cos x$$

Conjecture In Exercises 69–72, graph the functions f and g. Use the graphs to make a conjecture about the relationship between the functions.

69.
$$f(x) = \sin x + \cos\left(x + \frac{\pi}{2}\right), \quad g(x) = 0$$

70.
$$f(x) = \sin x - \cos\left(x + \frac{\pi}{2}\right)$$
, $g(x) = 2\sin x$

71.
$$f(x) = \sin^2 x$$
, $g(x) = \frac{1}{2}(1 - \cos 2x)$

72.
$$f(x) = \cos^2 \frac{\pi x}{2}$$
, $g(x) = \frac{1}{2}(1 + \cos \pi x)$

Solving a Trigonometric Equation In Hamiltonian Analyzing a Damped Trigonometric Graph In Exercises 73-76, use a graphing utility to graph the function and the damping factor of the function in the same viewing window. Describe the behavior of the function as x increases without bound.

73.
$$g(x) = e^{-x^2/2} \sin x$$
 74. $f(x) = e^{-x} \cos x$

74.
$$f(x) = e^{-x} \cos x$$

75.
$$f(x) = 2^{-x/4} \cos \pi x$$

75.
$$f(x) = 2^{-x/4} \cos \pi x$$
 76. $h(x) = 2^{-x^2/4} \sin x$

Analyzing a Trigonometric Graph In Exercises 77-82, use a graphing utility to graph the function. Describe the behavior of the function as x approaches

77.
$$y = \frac{6}{x} + \cos x$$
, $x > 0$

78.
$$y = \frac{4}{x} + \sin 2x$$
, $x > 0$

79.
$$g(x) = \frac{\sin x}{x}$$

79.
$$g(x) = \frac{\sin x}{x}$$
 80. $f(x) = \frac{1 - \cos x}{x}$

$$81. \ f(x) = \sin\frac{1}{x}$$

81.
$$f(x) = \sin \frac{1}{x}$$
 82. $h(x) = x \sin \frac{1}{x}$

83. Meteorology The normal monthly high temperatures H (in degrees Fahrenheit) in Erie, Pennsylvania, are approximated by

$$H(t) = 57.54 - 18.53 \cos \frac{\pi t}{6} - 14.03 \sin \frac{\pi t}{6}$$

and the normal monthly low temperatures L are approximated by

$$L(t) = 42.03 - 15.99 \cos \frac{\pi t}{6} - 14.32 \sin \frac{\pi t}{6}$$

where t is the time (in months), with t = 1 corresponding to January (see figure). (Source: NOAA)

- (a) What is the period of each function?
- (b) During what part of the year is the difference between the normal high and normal low temperatures greatest? When is it least?
- (c) The sun is northernmost in the sky around June 21, but the graph shows the warmest temperatures at a later date. Approximate the lag time of the temperatures relative to the position of the sun.

84. Sales The projected monthly sales S (in thousands of units) of lawn mowers are modeled by

$$S = 74 + 3t - 40\cos\frac{\pi t}{6}$$

where t is the time (in months), with t = 1 corresponding to January.

- (a) Graph the sales function over 1 year.
- (b) What are the projected sales for June?

• 85. Television Coverage

A television camera is on a reviewing platform 27 meters from the street on which a parade passes from left to right (see figure). Write the distance d from the

function over the interval $-\pi/2 < x < \pi/2$. (Consider x as negative when a unit in the parade approaches from the left.)

86. Distance A plane flying at an altitude of 7 miles above a radar antenna passes directly over the radar antenna (see figure). Let d be the ground distance from the antenna to the point directly under the plane and let x be the angle of elevation to the plane from the antenna. (d is positive as the plane approaches the antenna.) Write d as a function of x and graph the function over the interval $0 < x < \pi$.

Irin-k/Shutterstock.com

Exploration

True or False? In Exercises 87 and 88, determine whether the statement is true or false. Justify your answer.

- 87. You can obtain the graph of $y = \csc x$ on a calculator by graphing the reciprocal of $y = \sin x$.
- 88. You can obtain the graph of $y = \sec x$ on a calculator by graphing a translation of the reciprocal of $y = \sin x$.
- 89. Think About It Consider the function $f(x) = x - \cos x$.
- (a) Use a graphing utility to graph the function and verify that there exists a zero between 0 and 1. Use the graph to approximate the zero.
 - (b) Starting with $x_0 = 1$, generate a sequence x_1 , x_2, x_3, \ldots , where $x_n = \cos(x_{n-1})$. For example, $x_0 = 1, x_1 = \cos(x_0), x_2 = \cos(x_1), x_3 = \cos(x_2), \dots$ What value does the sequence approach?

Graphical Reasoning In Exercises 91 and 92, use a graphing utility to graph the function. Use the graph to determine the behavior of the function as $x \rightarrow c$. (Note: The notation $x \rightarrow c^+$ indicates that x approaches c from the right and $x \rightarrow c^-$ indicates that x approaches c from the left.)

(a)
$$x \to 0^+$$
 (b) $x \to 0^-$ (c) $x \to \pi^+$ (d) $x \to \pi^-$

(c)
$$x \rightarrow \pi^+$$

91. $f(x) = \cot x$ **92.** $f(x) = \csc x$

Graphical Reasoning In Exercises 93 and 94, use a graphing utility to graph the function. Use the graph to determine the behavior of the function as $x \rightarrow c$.

(a)
$$x \rightarrow (\pi/2)^+$$

(b)
$$x \to (\pi/2)^-$$

(c)
$$x \to (-\pi/2)^+$$

(d)
$$x \rightarrow (-\pi/2)^{-1}$$

93.
$$f(x) = \tan x$$

$$94. \ f(x) = \sec x$$