5.3 Exercises

See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises

Vocabulary: Fill in the blanks.

- 1. When solving a trigonometric equation, the preliminary goal is to _____ the trigonometric function on one side of the equation.
- 2. The _____ solution of the equation $2 \sin \theta + 1 = 0$ is $\theta = \frac{7\pi}{6} + 2n\pi$ and $\theta = \frac{11\pi}{6} + 2n\pi$, where n is an integer.
- 3. The equation $2 \tan^2 x 3 \tan x + 1 = 0$ is a trigonometric equation of _____ type.
- **4.** A solution of an equation that does not satisfy the original equation is an ______ solution.

Skills and Applications

Verifying Solutions In Exercises 5-10, verify that each x-value is a solution of the equation.

- 5. $\tan x \sqrt{3} = 0$
- 6. $\sec x 2 = 0$
- (a) $x = \frac{\pi}{3}$ (a) $x = \frac{\pi}{3}$
- (b) $x = \frac{4\pi}{3}$ (b) $x = \frac{5\pi}{3}$
- 7. $3 \tan^2 2x 1 = 0$
- 8. $2\cos^2 4x 1 = 0$
- (a) $x = \frac{\pi}{12}$
- (a) $x = \frac{\pi}{16}$
- (b) $x = \frac{5\pi}{12}$
- (b) $x = \frac{3\pi}{16}$
- 9. $2 \sin^2 x \sin x 1 = 0$
- (a) $x = \frac{\pi}{2}$
- (b) $x = \frac{7\pi}{6}$
- 10. $\csc^4 x 4 \csc^2 x = 0$

 - (a) $x = \frac{\pi}{6}$ (b) $x = \frac{5\pi}{6}$

Solving a Trigonometric Equation In Exercises 11-28, solve the equation.

- 11. $\sqrt{3} \csc x 2 = 0$
- 12. $\tan x + \sqrt{3} = 0$
- 13. $\cos x + 1 = -\cos x$
- **14.** $3 \sin x + 1 = \sin x$
- **15.** $3 \sec^2 x 4 = 0$
- **16.** $3 \cot^2 x 1 = 0$
- 17. $4\cos^2 x 1 = 0$
- 18. $2 4 \sin^2 x = 0$
- **19.** $\sin x(\sin x + 1) = 0$
- **20.** $(2 \sin^2 x 1)(\tan^2 x 3) = 0$
- **21.** $\cos^3 x \cos x = 0$
- 22. $\sec^2 x 1 = 0$
- **23.** $3 \tan^3 x = \tan x$
- **24.** $\sec x \csc x = 2 \csc x$
- **25.** $2\cos^2 x + \cos x 1 = 0$
- **26.** $2 \sin^2 x + 3 \sin x + 1 = 0$
- **27.** $\sec^2 x \sec x = 2$
- **28.** $\csc^2 x + \csc x = 2$

Solving a Trigonometric Equation in the interval $[0, 2\pi)$. Solving a Trigonometric Equation In Exercises 29-38, find all solutions of the

- **29.** $\sin x 2 = \cos x 2$
- **30.** $\cos x + \sin x \tan x = 2$
- 31. $2 \sin^2 x = 2 + \cos x$
- 32. $\tan^2 x = \sec x 1$
- 33. $\sin^2 x = 3 \cos^2 x$
- **34.** $2 \sec^2 x + \tan^2 x 3 = 0$
- 35. $2 \sin x + \csc x = 0$
- **36.** $3 \sec x 4 \cos x = 0$
- 37. $\csc x + \cot x = 1$
- **38.** $\sec x + \tan x = 1$

Solving a Multiple-Angle Equation In Exercises 39-46, solve the multiple-angle equation.

- **39.** $2\cos 2x 1 = 0$ **40.** $2\sin 2x + \sqrt{3} = 0$
- **41.** $\tan 3x 1 = 0$ **42.** $\sec 4x 2 = 0$
- **43.** $2\cos\frac{x}{2} \sqrt{2} = 0$ **44.** $2\sin\frac{x}{2} + \sqrt{3} = 0$
- **45.** $3 \tan \frac{x}{2} \sqrt{3} = 0$ **46.** $\tan \frac{x}{2} + \sqrt{3} = 0$

Finding x-Intercepts In Exercises 47 and 48, find the x-intercepts of the graph.

- **47.** $y = \sin \frac{\pi x}{2} + 1$
- **48.** $y = \sin \pi x + \cos \pi x$

Approximating Solutions In Exercises 49-58, use a graphing utility to approximate (to three decimal places) the solutions of the equation in the interval $[0, 2\pi)$.

- 49. $5 \sin x + 2 = 0$
- **50.** $2 \tan x + 7 = 0$
- 51. $\sin x 3\cos x = 0$ 52. $\sin x + 4\cos x = 0$
- 53. $\cos x = x$
- 54. $\tan x = \csc x$
- $55. \sec^2 x 3 = 0$
- $\mathbf{56.} \ \csc^2 x 5 = 0$
- 57. $2 \tan^2 x = 15$
- 58. $6 \sin^2 x = 5$

Using Inverse Functions In Exercises 59–70, solve the equation.

- 59. $\tan^2 x + \tan x 12 = 0$
- 60. $\tan^2 x \tan x 2 = 0$
- 61. $\sec^2 x 6 \tan x = -4$
- 62. $\sec^2 x + \tan x = 3$
- 63. $2\sin^2 x + 5\cos x = 4$
- **64.** $2\cos^2 x + 7\sin x = 5$
- 65. $\cot^2 x 9 = 0$
- **66.** $\cot^2 x 6 \cot x + 5 = 0$
- 67. $\sec^2 x 4 \sec x = 0$
- **68.** $\sec^2 x + 2 \sec x 8 = 0$
- **69.** $\csc^2 x + 3 \csc x 4 = 0$

70. $\csc^2 x - 5 \csc x = 0$

回談回 Using the Quadratic Formula In Exercises 71-74, use the Quadratic Formula to find all solutions of the equation in the interval $[0, 2\pi)$. Round your result to four decimal places.

- 71. $12 \sin^2 x 13 \sin x + 3 = 0$
- 72. $3 \tan^2 x + 4 \tan x 4 = 0$
- 73. $tan^2x + 3 tan x + 1 = 0$
- 74. $4\cos^2 x 4\cos x 1 = 0$

Approximating Solutions In Exercises 75–78, use a graphing utility to approximate (to three decimal places) the solutions of the equation in the given interval.

- 75. $3 \tan^2 x + 5 \tan x 4 = 0$, $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$
- 76. $\cos^2 x 2\cos x 1 = 0$, $[0, \pi]$
- 77. $4\cos^2 x 2\sin x + 1 = 0$, $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$
- **78.** $2 \sec^2 x + \tan x 6 = 0$, $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

Approximating Maximum and Minimum Points f In Exercises 79–84, (a) use a graphing utility to graph the function and approximate the maximum and minimum points on the graph in the interval $[0, 2\pi)$, and (b) solve the trigonometric equation and verify that its solutions are the x-coordinates of the maximum and minimum points of f. (Calculus is required to find the trigonometric equation.)

Trigonometric Equation

371

- $2\sin x \cos x \sin x = 0$ **79.** $f(x) = \sin^2 x + \cos x$
- $-2\sin x\cos x \cos x = 0$ **80.** $f(x) = \cos^2 x - \sin x$
- $\cos x \sin x = 0$ **81.** $f(x) = \sin x + \cos x$
- **82.** $f(x) = 2 \sin x + \cos 2x$ $2 \cos x 4 \sin x \cos x = 0$ $-\sin^2 x + \cos^2 x = 0$ **83.** $f(x) = \sin x \cos x$
- **84.** $f(x) = \sec x + \tan x x \sec x \tan x + \sec^2 x = 1$

Number of Points of Intersection In Exercises 85 and 86, use the graph to approximate the number of points of intersection of the graphs of y_1 and y_2 .

86. $y_1 = 2 \sin x$ **85.** $y_1 = 2 \sin x$ $y_2 = \frac{1}{2}x + 1$

- 87. Graphical Reasoning Consider the function

$$f(x) = \frac{\sin x}{x}$$

Function

and its graph, shown in the figure below.

- (a) What is the domain of the function?
- (b) Identify any symmetry and any asymptotes of the
- (c) Describe the behavior of the function as $x \rightarrow 0$.
- (d) How many solutions does the equation

$$\frac{\sin x}{x} =$$

have in the interval [-8, 8]? Find the solutions.

88. Graphical Reasoning Consider the function

$$f(x) = \cos\frac{1}{x}$$

and its graph, shown in the figure below.

- (a) What is the domain of the function?
- (b) Identify any symmetry and any asymptotes of the
- (c) Describe the behavior of the function as $x \to 0$.
- (d) How many solutions does the equation

$$\cos\frac{1}{x} = 0$$

have in the interval [-1, 1]? Find the solutions.

- (e) Does the equation cos(1/x) = 0 have a greatest solution? If so, then approximate the solution. If 3 93. Meteorology The table shows the normal daily not, then explain why.
- 89. Harmonic Motion A weight is oscillating on the end of a spring (see figure). The displacement from equilibrium of the weight relative to the point of equilibrium is given by

$$y = \frac{1}{12}(\cos 8t - 3\sin 8t)$$

where y is the displacement (in meters) and t is the time (in seconds). Find the times when the weight is at the point of equilibrium (y = 0) for $0 \le t \le 1$.

20. Damped Harmonic Motion The displacement from equilibrium of a weight oscillating on the end of a spring is given by

$$y = 1.56e^{-0.22t}\cos 4.9t$$

where y is the displacement (in feet) and t is the time (in seconds). Use a graphing utility to graph the displacement function for $0 \le t \le 10$. Find the time beyond which the distance between the weight and equilibrium does not exceed 1 foot.

91. Equipment Sales The monthly sales S (in hundreds of units) of skiing equipment at a sports store are approximated by

$$S = 58.3 + 32.5 \cos \frac{\pi t}{6}$$

where t is the time (in months), with t = 1 corresponding to January. Determine the months in which sales exceed 7500 units.

92. Projectile Motion A baseball is hit at an angle of θ with the horizontal and with an initial velocity of $v_0 = 100$ feet per second. An outfielder catches the ball 300 feet from home plate (see figure). Find θ when the range r of a projectile is given by

$$r = \frac{1}{32}v_0^2 \sin 2\theta.$$

Not drawn to scale

high temperatures C in Chicago (in degrees Fahrenheit) for month t, with t = 1 corresponding to January. (Source: NOAA)

DATA	Month, t	Chicago, C
Spreadsheet at LarsonPrecalculus.com	1	31.0
	2	35.3
	3	46.6
	4	59.0
	5	70.0
	6	79.7
	7	84.1
	8	81.9
	9	74.8
	10	62.3
	11	48.2
	12	34.8

- (a) Use a graphing utility to create a scatter plot of the
- (b) Find a cosine model for the temperatures.
- (c) Graph the model and the scatter plot in the same viewing window. How well does the model fit the
- (d) What is the overall normal daily high temperature?
- (e) Use the graphing utility to determine the months during which the normal daily high temperature is above 72°F and below 72°F.

94. Ferris Wheel

The height h (in feet) above ground of a seat on a Ferris wheel at time t (in minutes) can be modeled by

$$h(t) = 53 + 50 \sin\left(\frac{\pi}{16}t - \frac{\pi}{2}\right).$$

The wheel makes one revolution every 32 seconds. The ride begins when t = 0.

(h) When will a person's seat be at the top of the Ferris wheel for the first time during the ride? For a ride that lasts 160 seconds, how many times will a person's seat be at the top of the ride, and at what times?

$$A = 2x \cos x, \ 0 < x < \pi/2.$$

- (a) Use a graphing utility to graph the area function, and approximate the area of the largest inscribed 103. Graphical Reasoning Use a graphing utility rectangle.
- (b) Determine the values of x for which $A \ge 1$.
- 96. Quadratic Approximation Consider the function

$$f(x) = 3\sin(0.6x - 2).$$

- (a) Approximate the zero of the function in the interval [0, 6].
- (b) A quadratic approximation agreeing with f at x = 5 is

$$g(x) = -0.45x^2 + 5.52x - 13.70.$$

Use a graphing utility to graph f and g in the same viewing window. Describe the result.

(c) Use the Quadratic Formula to find the zeros of g. Compare the zero of g in the interval [0, 6] with the result of part (a).

iStockpholo.com/Flory

Fixed Point In Exercises 97 and 98, find the least positive fixed point of the function f. A fixed point of a function f is a real number c such that f(c) = c.

97.
$$f(x) = \tan(\pi x/4)$$

98.
$$f(x) = \cos x$$

Exploration

True or False? In Exercises 99 and 100, determine whether the statement is true or false. Justify your answer.

- 99. The equation $2 \sin 4t 1 = 0$ has four times the number of solutions in the interval $[0, 2\pi)$ as the equation $2 \sin t - 1 = 0$.
- 100. The trigonometric equation $\sin x = 3.4$ can be solved using an inverse trigonometric function.
- 101. Think About It Explain what happens when you divide each side of the equation $\cot x \cos^2 x = 2 \cot x$ by cot x. Is this a correct method to use when solving equations?

- to confirm the solutions found in Example 6 in two different ways.
 - (a) Graph both sides of the equation and find the x-coordinates of the points at which the graphs intersect.

Left side:
$$y = \cos x + 1$$

Right side:
$$y = \sin x$$

- (b) Graph the equation $y = \cos x + 1 \sin x$ and find the x-intercepts of the graph.
- (c) Do both methods produce the same x-values? Which method do you prefer? Explain.

Project: Meteorology To work an extended application analyzing the normal daily high temperatures in Phoenix, Arizona, and in Seattle, Washington, visit this text's website at LarsonPrecalculus.com. (Source: NOAA)