379

Exercises

See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercise

Vocabulary: Fill in the blank.

- 1. $\sin(u v) =$ _____
- **2.** $\cos(u + v) =$
- 3. tan(u + v) =_____
- **4.** $\sin(u + v) =$ _____
- 5. $\cos(u v) =$ _____
- **6.** tan(u v) =

Skills and Applications

Evaluating Trigonometric Expressions In Exercises 7–10, find the exact value of each expression.

- 7. (a) $\cos(\frac{\pi}{4} + \frac{\pi}{3})$
- (b) $\cos \frac{\pi}{4} + \cos \frac{\pi}{2}$
- 8. (a) $\sin\left(\frac{7\pi}{6} \frac{\pi}{3}\right)$ (b) $\sin\frac{7\pi}{6} \sin\frac{\pi}{3}$
- 9. (a) $\sin(135^{\circ} 30^{\circ})$
- (b) $\sin 135^{\circ} \cos 30^{\circ}$
- **10.** (a) $\cos(120^{\circ} + 45^{\circ})$
- (b) $\cos 120^{\circ} + \cos 45^{\circ}$

Evaluating Trigonometric Functions
In Exercises 11–26, find the evact values of the sine, cosine, and tangent of the angle.

- 11. $\frac{11\pi}{12} = \frac{3\pi}{4} + \frac{\pi}{6}$
- 12. $\frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4}$
- 13. $\frac{17\pi}{12} = \frac{9\pi}{4} \frac{5\pi}{6}$ 14. $-\frac{\pi}{12} = \frac{\pi}{6} \frac{\pi}{4}$
- 15. $105^{\circ} = 60^{\circ} + 45^{\circ}$ 17. $-195^{\circ} = 30^{\circ} - 225^{\circ}$ 18. $255^{\circ} = 300^{\circ} - 45^{\circ}$
 - 16. $165^{\circ} = 135^{\circ} + 30^{\circ}$
- 19. $\frac{13\pi}{12}$
- **20.** $\frac{19\pi}{12}$
- 21. $-\frac{5\pi}{12}$
- **23.** 285°
- 24. 15°
- **25.** −165°
- **26.** -105°

Rewriting a Trigonometric Expression In Exercises 27–34, write the expression as the sine, cosine, or tangent of an angle.

- **27.** $\sin 3 \cos 1.2 \cos 3 \sin 1.2$
- **28.** $\cos \frac{\pi}{7} \cos \frac{\pi}{5} \sin \frac{\pi}{7} \sin \frac{\pi}{5}$
- **29.** $\sin 60^{\circ} \cos 15^{\circ} + \cos 60^{\circ} \sin 15^{\circ}$
- **30.** $\cos 130^{\circ} \cos 40^{\circ} \sin 130^{\circ} \sin 40^{\circ}$
- 31. $\frac{\tan(\pi/15) + \tan(2\pi/5)}{1 \tan(\pi/15)\tan(2\pi/5)}$
- 32. $\frac{\tan 1.1 \tan 4.6}{1 + \tan 1.1 \tan 4.6}$
- 33. $\cos 3x \cos 2y + \sin 3x \sin 2y$
- 34. $\sin x \cos 2x + \cos x \sin 2x$

Evaluating a Trigonometric Expression In Exercises 35–40, find the exact value of the expression.

- 35. $\sin \frac{\pi}{12} \cos \frac{\pi}{4} + \cos \frac{\pi}{12} \sin \frac{\pi}{4}$
- **36.** $\cos \frac{\pi}{16} \cos \frac{3\pi}{16} \sin \frac{\pi}{16} \sin \frac{3\pi}{16}$
- 37. $\cos 130^{\circ} \cos 10^{\circ} + \sin 130^{\circ} \sin 10^{\circ}$
- 38. $\sin 100^{\circ} \cos 40^{\circ} \cos 100^{\circ} \sin 40^{\circ}$
- 39. $\frac{\tan(9\pi/8) \tan(\pi/8)}{1 + \tan(9\pi/8)\tan(\pi/8)}$
- 40. $\frac{\tan 25^{\circ} + \tan 110^{\circ}}{1 \tan 25^{\circ} \tan 110^{\circ}}$

Evaluating a Trigonometric Expression In Exercises 41-46, find the exact value of the trigonometric expression given that $\sin u = -\frac{3}{5}$, where $3\pi/2 < u < 2\pi$, and $\cos \nu = \frac{15}{17}$, where $0 < \nu < \pi/2$.

- **41.** $\sin(u + v)$
- **42.** $\cos(u v)$
- **43.** tan(u + v)
- **44.** $\csc(u v)$
- **45.** $\sec(v u)$
- **46.** $\cot(u + v)$

Evaluating a Trigonometric Expression In Exercises 47–52, find the exact value of the trigonometric expression given that $\sin u = -\frac{7}{25}$ and $\cos v = -\frac{4}{5}$. (Both u and v are in Quadrant III.)

- **47.** $\cos(u + v)$
- **48.** $\sin(u + v)$
- **49.** tan(u v)
- **50.** $\cot(v u)$
- **51.** $\csc(u v)$
- **52.** $\sec(v u)$

An Application of a Sum or Difference Formula In Exercises 53-56, write the trigonometric expression as an algebraic expression.

- 53. $\sin(\arcsin x + \arccos x)$
- **54.** $\sin(\arctan 2x \arccos x)$
- 55. $\cos(\arccos x + \arcsin x)$
- **56.** $\cos(\arccos x \arctan x)$

Verifying a Trigonometric Identity In Exercises 57–64, verify the identity.

- 57. $\sin\left(\frac{\pi}{2} x\right) = \cos x$ 58. $\sin\left(\frac{\pi}{2} + x\right) = \cos x$
- 59. $\sin(\frac{\pi}{6} + x) = \frac{1}{2}(\cos x + \sqrt{3}\sin x)$
- $60. \cos\left(\frac{5\pi}{4} x\right) = -\frac{\sqrt{2}}{2}(\cos x + \sin x)$
- 61. $\tan(\theta + \pi) = \tan \theta$ 62. $\tan\left(\frac{\pi}{4} \theta\right) = \frac{1 \tan \theta}{1 + \tan \theta}$
- 63. $\cos(\pi \theta) + \sin(\frac{\pi}{2} + \theta) = 0$
- **64.** $\cos(x + y)\cos(x y) = \cos^2 x \sin^2 y$

Deriving a Reduction Formula In Exercises 65-68, write the expression as a trigonometric function of only θ , and use a graphing utility to confirm your answer graphically.

- 65. $\cos\left(\frac{3\pi}{2}-\theta\right)$
- **66.** $\sin(\pi + \theta)$
- 67. $\csc\left(\frac{3\pi}{2} + \theta\right)$
- **68.** $\cot(\theta \pi)$

Solving a Trigonometric Equation In Exercises 69–74, find all solutions of the equation in the interval $[0, 2\pi)$.

- **69.** $\sin(x + \pi) \sin x + 1 = 0$
- 70. $\cos(x + \pi) \cos x 1 = 0$
- 71. $\cos(x + \frac{\pi}{4}) \cos(x \frac{\pi}{4}) = 1$
- 72. $\sin\left(x + \frac{\pi}{6}\right) \sin\left(x \frac{7\pi}{6}\right) = \frac{\sqrt{3}}{2}$
- 73. $tan(x + \pi) + 2 sin(x + \pi) = 0$
- 74. $\sin\left(x + \frac{\pi}{2}\right) \cos^2 x = 0$

Approximating Solutions In Exercises 75-78, use a graphing utility to approximate the solutions of the equation in the interval $[0, 2\pi)$.

- 75. $\cos(x + \frac{\pi}{4}) + \cos(x \frac{\pi}{4}) = 1$
- 76. $\tan(x + \pi) \cos\left(x + \frac{\pi}{2}\right) = 0$
- 77. $\sin\left(x + \frac{\pi}{2}\right) + \cos^2 x = 0$
- **78.** $\cos\left(x \frac{\pi}{2}\right) \sin^2 x = 0$ Brian A Jackson/Shutterstock.com

79. Harmonic Motion A weight is attached to a spring suspended vertically from a ceiling. When a driving force is applied to the system, the weight moves vertically from its equilibrium position, and this motion is modeled by

$$y = \frac{1}{3}\sin 2t + \frac{1}{4}\cos 2t$$

where y is the displacement (in feet) from equilibrium of the weight and t is the time (in seconds).

(a) Use the identity

$$a \sin B\theta + b \cos B\theta = \sqrt{a^2 + b^2} \sin(B\theta + C)$$

where $C = \arctan(b/a)$, a > 0, to write the model in the form

$$y = \sqrt{a^2 + b^2} \sin(Bt + C).$$

- (b) Find the amplitude of the oscillations of the weight.
- (c) Find the frequency of the oscillations of the weight.

• • 80. Standing Waves • • • • • •

The equation of a standing wave is obtained by adding the displacements of two waves traveling in opposite directions (see figure). Assume that each of the waves has amplitude A,

period T, and wavelength λ . The models for two such waves are

$$y_1 = A \cos 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right)$$
 and $y_2 = A \cos 2\pi \left(\frac{t}{T} + \frac{x}{\lambda}\right)$

Show that

$$y_1 + y_2 = 2A\cos\frac{2\pi t}{T}\cos\frac{2\pi x}{\lambda}.$$

381

Exploration

True or False? In Exercises 81–84, determine whether the statement is true or false. Justify your answer.

- **81.** $\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$
- **82.** $cos(u \pm v) = cos u cos v \pm sin u sin v$
- 83. When α and β are supplementary, $\sin \alpha \cos \beta = \cos \alpha \sin \beta$.
- **84.** When A, B, and C form $\triangle ABC$, $\cos(A + B) = -\cos C$.
- 85. Error Analysis Describe the error.

$$\tan\left(x - \frac{\pi}{4}\right) = \frac{\tan x - \tan(\pi/4)}{1 - \tan x \tan(\pi/4)}$$

$$= \frac{\tan x - 1}{1 - \tan x}$$

$$= -1$$

HOW DO YOU SEE IT? Explain how to use the figure to justify each statement. (a) $\sin(u + v) \neq \sin u + \sin v$ (b) $\sin(u - v) \neq \sin u - \sin v$

Verifying an Identity In Exercises 87–90, verify the identity.

- 87. $cos(n\pi + \theta) = (-1)^n cos \theta$, *n* is an integer
- **88.** $\sin(n\pi + \theta) = (-1)^n \sin \theta$, *n* is an integer
- 89. $a \sin B\theta + b \cos B\theta = \sqrt{a^2 + b^2} \sin(B\theta + C)$. where $C = \arctan(b/a)$ and a > 0
- **90.** $a \sin B\theta + b \cos B\theta = \sqrt{a^2 + b^2} \cos(B\theta C)$, where $C = \arctan(a/b)$ and b > 0

Rewriting a Trigonometric Expression In Exercises 91-94, use the formulas given in Exercises 89 and 90 to write the trigonometric expression in the following forms.

- (a) $\sqrt{a^2+b^2}\sin(B\theta+C)$
- (b) $\sqrt{a^2+b^2}\cos(B\theta-C)$
- 91. $\sin \theta + \cos \theta$
- **92.** $3 \sin 2\theta + 4 \cos 2\theta$
- **93.** $12 \sin 3\theta + 5 \cos 3\theta$
- 94. $\sin 2\theta + \cos 2\theta$

Rewriting a Trigonometric Expression In Exercises 95 and 96, use the formulas given in Exercises

89 and 90 to write the trigonometric expression in the form $a \sin B\theta + b \cos B\theta$.

95.
$$2 \sin[\theta + (\pi/4)]$$

96.
$$5\cos[\theta - (\pi/4)]$$

Angle Between Two Lines In Exercises 97 and 98 use the figure, which shows two lines whose equations are $y_1 = m_1 x + b_1$ and $y_2 = m_2 x + b_2$. Assume that both lines have positive slopes. Derive a formula for the angle between the two lines. Then use your formula to find the angle between the given pair of lines.

97.
$$y = x$$
 and $y = \sqrt{3}x$

97.
$$y = x$$
 and $y = \sqrt{3}x$ **98.** $y = x$ and $y = x/\sqrt{3}$

🖶 Graphical Reasoning – In Exercises 99 and 100, use a graphing utility to graph y_1 and y_2 in the same viewing window. Use the graphs to determine whether $y_1 = y_2$. Explain your reasoning.

99.
$$y_1 = \cos(x+2)$$
, $y_2 = \cos x + \cos 2$

100.
$$y_1 = \sin(x+4)$$
, $y_2 = \sin x + \sin 4$

- 101. Proof Write a proof of the formula for sin(u + v). Write a proof of the formula for $\sin(u - v)$.
- 102. An Application from Calculus Let $x = \pi/3$ in the identity in Example 8 and define the functions fand g as follows.

$$f(h) = \frac{\sin[(\pi/3) + h] - \sin(\pi/3)}{h}$$

$$g(h) = \cos\frac{\pi}{3} \left(\frac{\sin h}{h} \right) - \sin\frac{\pi}{3} \left(\frac{1 - \cos h}{h} \right)$$

- (a) What are the domains of the functions f and g?
- (b) Use a graphing utility to complete the table.

h	0.5	0.2	0.1	0.05	0.02	0.01
f(h)						
g(h)						

- (c) Use the graphing utility to graph the functions f and g.
- (d) Use the table and the graphs to make a conjecture about the values of the functions f and g as $h \rightarrow 0^+$

Multiple-Angle and Product-to-Sum Formulas

A variety of trigonometric formulas enable you to rewrite trigonometric equations in more convenient forms. For example, in Exercise 71 on page 389, you will use a half-angle formula to rewrite an equation relating the Mach number of a supersonic airplane to the apex angle of the cone formed by the sound waves behind the airplane.

- Use multiple-angle formulas to rewrite and evaluate trigonometric functions.
- Use power-reducing formulas to rewrite trigonometric expressions.
- Use half-angle formulas to rewrite and evaluate trigonometric functions.
- Use product-to-sum and sum-to-product formulas to rewrite and evaluate trigonometric expressions.
- Use trigonometric formulas to rewrite real-life models.

Multiple-Angle Formulas

In this section, you will study four other categories of trigonometric identities.

- 1. The first category involves functions of multiple angles such as sin ku and cos ku.
- 2. The second category involves squares of trigonometric functions such as $\sin^2 u$.
- 3. The third category involves functions of half-angles such as $\sin(u/2)$.
- **4.** The fourth category involves products of trigonometric functions such as $\sin u \cos v$.

You should learn the double-angle formulas because they are used often in trigonometry and calculus. For proofs of these formulas, see Proofs in Mathematics on page 395.

Double-Angle Formulas

$$\sin 2u = 2 \sin u \cos u$$

$$\tan 2u = \frac{2 \tan u}{1 - \tan^2 u}$$

$$\cos 2u = \cos^2 u - \sin^2 u$$

$$= 2 \cos^2 u - 1$$

$$= 1 - 2 \sin^2 u$$

EXAMPLE 1

Solving a Multiple-Angle Equation

Solve $2\cos x + \sin 2x = 0$.

Solution Begin by rewriting the equation so that it involves trigonometric functions of only x. Then factor and solve.

$$2\cos x + \sin 2x = 0$$
 Write original equation.
$$2\cos x + 2\sin x \cos x = 0$$
 Double-angle formula
$$2\cos x(1 + \sin x) = 0$$
 Factor.
$$2\cos x = 0 \text{ and } 1 + \sin x = 0$$
 Set factors equal to zero.
$$x = \frac{\pi}{2}, \frac{3\pi}{2}$$

$$x = \frac{3\pi}{2}$$
 Solutions in $[0, 2\pi)$

So, the general solution is

$$x = \frac{\pi}{2} + 2n\pi \quad \text{and} \quad x = \frac{3\pi}{2} + 2n\pi$$

where n is an integer. Verify these solutions graphically.

√ Checkpoint (1))) Audio-video solution in English & Spanish at LarsonPrecalculus.com

Solve $\cos 2x + \cos x = 0$.

Chris Parypa Photography/Shutterstock.com